Total Page - 9 UG/4th Sem/MATH/H/19

2019

B.Sc. (Honours)

4th Semester Examination

MATHEMATICS

Paper - C8T

(Riemann Integration and Series and functions)

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.

Unit - I

(Riemann Integration)

[Marks 19]

1. Answer any two questions

 2×2

(a) A function f is defined on [1, 3] by $f(x) = [x^2]$.

Evaluate $\int f(x) dx$.

[Turn Over]

(b) If a function $f: [a, b] \to R$ be integrable on [a, b] and $f(x) \ge 0$ for all $x \in [a, b]$, then

prove that
$$\int_{a}^{b} f \ge 0$$
.

(c) If f be defined on [-2, 2] by

$$f(x) = 3x^{2} \cos \frac{\pi}{x^{2}} + 2\pi \sin \frac{\pi}{x^{2}}, \ x \neq 0$$
$$= 0, \ x = 0,$$

then show that f is integrable on [-2, 2].

Evaluate
$$\int_{-2}^{2} f$$
. 1+1

2. Answer any one question:

5×1

(a) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and c > 0, define

$$g: \mathbb{R} \to \mathbb{R}$$
 by $g(x) = \int_{x-c}^{x+c} f(t)dt$. Show that

g(x) is differentiable on \mathbb{R} and find g'(x).

4+1

(b) State Bonnet's form of second mean value theorem of integral calculus. Hence establish

$$\left| \int_{a}^{b} \sin x^{2} \right| \le \frac{1}{a} \text{ in } 0 < a < b < \infty.$$
 2+3

3. Answer any one question:

10×1

- (a) (i) State and prove Darboux theorem. 5
 - (ii) If a function $f: [a, b] \to R$ be integrable on [a, b] then prove that the function F

defined by
$$F(x) = \int_{a}^{x} f(t)dt$$
, $x \in [a, b]$

is differentiable at any point $c \in [a, b]$ at which f is continuous and F'(c) = f(c).

- (b) (i) If a function $f: [a, b] \rightarrow R$ be integrable on [a, b] then prove that |f| is integrable on [a, b]. Is the converse true? 4+1
 - (ii) Define Riemann sum for a function f. A function f is defined on [0, 1] by

$$f(x) = 1$$
, if x is rational $= 0$, if x is irrational.

[Turn Over]

(4)

Using Riemann sums, show that f is not integrable on [0, 1].

Unit - II

[Improper Integrals]

[Marks 11]

4. Answer any three questions:

 2×3

(a) Prove that $\Gamma(n+1) = n\Gamma(n), n > 0$.

_

- (b) Using μ test, show that $\int_{1}^{\infty} \frac{1}{x(1+x^2)} dx$ is convergent.
- (c) Using comparison test, show that $\int_0^1 \frac{x^{p-1}}{1+x} dx$ is convergent if p > 0 and is divergent if $p \le 0$.

2

- (d) State Dirichlet test for the convergence of an improper integral.
- (e) Show that $\int_{0}^{\pi/2} \frac{x^{m}}{\sin^{n} x} dx$ is convergent iff

n < 1 + m.

2

5. Answer any one question:

5×1

Examine the convergence of the integrable

(i)
$$\int_{0}^{1} \frac{\log x}{\sqrt{1-x}} dx$$

(ii)
$$\int_{0}^{\infty} x^{m-1} e^{-x} dx$$

Unit - III

[Uniform convergence of sequence and series of functions]

[Marks 16]

6. Answer any three questions:

 2×3

- (a) If a sequence of function $\{f_n(x)\}$ be uniformly convergent on $D \subset R$, then prove that the limit function f is bounded on D.
- (b) If $f_n(x) = x^n$, $x \in [0, 1]$, show that the sequence of functions $\{f_n\}$ is not uniformly convergent on [0, 1].

- (c) State Weierstrass M-test for the uniform convergence of a series of function.
- (d) Find $L_t \sum_{x\to 0} \frac{\cos nx}{n(n+1)}$.
- (e) If D be a finite subset of R and a sequence $\{f_n\}$ of real valued functions on D converges pointwise to f, then prove that $\{f_n\}$ converges uniformly to f on D.
- 7. Answer any one question:

10×1

- (a) (i) State and prove Cauchy criterion for the uniform convergence of sequence of functions.
 - (ii) If $\{f_n\}$ be a sequence of function defined on [0, 1] by $f_n(x) = nxe^{-nx^2}$, show that the sequence $\{f_n\}$ is not uniformly convergent on [0, 1].
- (b) (i) Let D⊂R and for each n∈N,
 f_n:D→R is a continuous function on D.
 If the series ∑f_n be uniformly convergent on D then prove that the sum function S is continuous on D.

(ii) Show that the series $\sum \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all real x. If s(x) be the sum function, verify that s'(x) is obtained by term-by-term differentiation.

6

Unit - IV

[Fourier Series]

[Marks 7]

8. Answer any one question:

2×1

- (a) Is $\sum_{1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ is a Fourier Series or not? Justify.
- (b) State Dirichlet's conditions for convergence of a Fourier series.
- 9. Answer any one question:

5×1

(a) Let f: [-π, π] → R be continuous except for at most a finite number of jumps and is periodic of period 2π then prove that

$$\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx$$

where a_n and b_n are the Fourier co-efficients of

$$f(x)$$
 defined by $a_k = \frac{1}{\pi} \int_{\pi}^{\pi} f(t) \cos nt \, dt$, $n \ge 0$

$$=\frac{1}{\pi}\int_{-\pi}^{+\pi}f(t)\sin nt\ dt\,,$$

for $n \ge 1$.

(b) Obtain Fourier series representation of f in $[-\pi, \pi]$ where $f(x) = x \ \forall x \in [-\pi, \pi]$ and hence

deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
.

Unit - V

[Power Series]

[Marks 7]

10. Answer any one question:

 2×1

(a) Let f(x) be the sum of a power series $\sum a_n x^n$ on (-R, R) where R > 0. If f(x) + f(-x) = 0 $\forall x \in (-R, R)$. Prove that $a_n = 0$ for all even positive integer.

- (b) Find the interval of convergent of the power series $\sum \frac{(-1)^{n+1}}{n+1} (x+1)^n$.
- 11. Answer any one question:

5×1

- (a) Let $\sum a_n x^n$ be a power series with radius of convergence R > 0. Let f(x) be sum of the series on (-R, R) then prove that f(x) is continuous on (-R, R).
- (b) Assume the power series

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{1}{2}x^2 + \frac{1.3}{2.4}x^4 + \frac{1.3.5}{2.4.6}x^6 + \dots$$

obtain the power series expansion of $\sin^{-1}x$ and hence deduce

$$1 + \frac{1}{2.3} + \frac{1}{2.4.5} + \frac{1.3.5}{2.4.6.7} + \dots = \frac{\pi}{2}$$